Die gebruik van MATLAB, hoe kan ek die 3-daagse bewegende gemiddelde van 'n spesifieke kolom van 'n matriks en voeg die bewegende gemiddelde op daardie matriks ek probeer om die 3-daagse bewegende gemiddelde van onder bereken op die top van die matriks. Ek het my kode voorsien: Gegewe die volgende matriks A en masker: Ek het probeer die implementering van die conv opdrag maar Ek ontvang 'n fout. Hier is die conv opdrag Ek het probeer om te gebruik op die 2de kolom van matriks A: Die uitset Ek verlang word in die volgende matriks: Indien u enige voorstelle, sou ek dit baie waardeer. Dankie vir kolom 2 van matriks A, ek berekening van die 3-daagse bewegende gemiddelde soos volg en die plasing van die resultaat in kolom 4 van matriks A (Ek herdoop matriks n as 39desiredOutput39 net ter illustrasie). Die 3-dag gemiddeld van 17, 14, 11, is 14 die 3-dag gemiddeld van 14, 11, 8 is 11 die 3-dag gemiddeld van 11, 8, 5 is 8 en die 3-dag gemiddeld van 8, 5, 2 is 5. Daar is geen waarde in die onderste 2 rye vir die 4de kolom omdat die berekening vir die 3-daagse bewegende gemiddelde begin aan die onderkant. Die 39valid39 uitset sal nie gewys word tot ten minste 17, 14, en 11. Hopelik sal hierdie sin uitvoering maak Aaron 12 Junie 13 by 01:28 1 Antwoord In die algemeen is dit sal help as jy die fout sal wys. In hierdie geval jy doen twee dinge verkeerd: Eerste het jou konvolusie te verdeel deur drie (of die lengte van die bewegende gemiddelde) Tweedens, let op die grootte van c. Jy kan nie net pas c in 'n. Die tipiese manier om 'n bewegende gemiddelde sou wees om dieselfde te gebruik, maar dit nie die geval is lyk wat jy wil hê. In plaas jy gedwing word om 'n paar lyne gebruik: Eenvoudige bewegende gemiddelde - SMA Wat is 'n eenvoudige bewegende gemiddelde - SMA N Eenvoudige bewegende gemiddelde (SMA) is 'n rekenkundige bewegende gemiddelde bereken deur die byvoeging van die sluitingsprys van die sekuriteit vir 'n aantal van die tyd tydperke en dan is dit totaal te deel deur die aantal tydperke. Soos getoon in die grafiek hierbo, baie handelaars kyk vir 'n kort termyn gemiddeldes hierbo langer termyn gemiddeldes te steek om die begin van 'n uptrend sein. Korttermyn gemiddeldes kan optree as die vlakke van ondersteuning wanneer die prys ondervind met 'n terugsakking. VIDEO laai die speler. Afbreek Eenvoudige bewegende gemiddelde - SMA N Eenvoudige bewegende gemiddelde is aanpas omdat dit bereken kan word vir 'n verskillende aantal tydperke, eenvoudig deur die toevoeging van die sluitingsprys van die sekuriteit vir 'n aantal tydperke en dan verdeel dit totaal deur die aantal van tydperke, wat die gemiddelde prys van die sekuriteit oor die tydperk gee. 'N Eenvoudige bewegende gemiddelde stryk uit wisselvalligheid, en maak dit makliker om die prys tendens van 'n sekuriteit te sien. As die eenvoudige tot bewegende gemiddelde punte, beteken dit dat die securitys prys is aan die toeneem. As dit is wys af beteken dit dat die securitys prys daal. Hoe langer die tydperk vir die bewegende gemiddelde, die gladder die eenvoudige bewegende gemiddelde. 'N Korter termyn bewegende gemiddelde is meer wisselvallig, maar sy lees is nader aan die bron data. Analitiese betekenis bewegende gemiddeldes is 'n belangrike analitiese instrument wat gebruik word om die huidige prys tendense te identifiseer en die potensiaal vir 'n verandering in 'n gevestigde tendens. Die eenvoudigste vorm van die gebruik van 'n eenvoudige bewegende gemiddelde in analise is om dit te gebruik om vinnig te identifiseer as 'n sekuriteit is in 'n uptrend of verslechtering neiging. Nog 'n gewilde, al is dit 'n bietjie meer kompleks analitiese instrument, is om 'n paar eenvoudige bewegende gemiddeldes te vergelyk met mekaar oor verskillende tydperke. As 'n korter termyn eenvoudige bewegende gemiddelde is bo 'n langer termyn gemiddelde, is 'n uptrend verwag. Aan die ander kant, 'n langtermyn-gemiddelde bo 'n korter termyn gemiddelde dui op 'n afwaartse beweging in die tendens. Gewilde handelspatrone Twee gewilde handelspatrone so eenvoudig bewegende gemiddeldes gebruik sluit die dood kruis en 'n goue kruis. 'N die dood kruis vind plaas wanneer die 50-dag eenvoudig bewegende gemiddelde kruise onder die 200-daagse bewegende gemiddelde. Dit word beskou as 'n lomp sein, wat verdere verliese is in die winkel. Die goue kruis vind plaas wanneer 'n korttermyn-bewegende gemiddelde breek bo 'n langtermyn-bewegende gemiddelde. Versterk deur 'n hoë verhandelingsvolumes, kan dit dui verdere stygings in store. It kan wees as jy 'n gewig wat is omgekeerd eweredig aan die venster grootte van toepassing: openbare klas AverageCounter int RunningAvg int RunningCount // Dit vervang die omsendbrief lys int WindowSize openbare AverageCounter (int windowSize) WindowSize windowSize openbare leemte waarde toevoeg (float NewValue) // groei so groot soos venster as meer monsters aangeteken as (RunningCount Dit WindowSize) RunningCount // rekursiewe bewegende gemiddelde: // GT avg (N) (W - 1) / W avg (N-1) (1 / W) monster // waar W is venster grootte RunningAvg (((RunningCount - 1) / RunningCount) RunningAvg) (1 / RunningCount) NewValue openbare float Gemiddeld () terug RunningAvg - verander na 13:53 Vrydag 9 November 2007 pwasser 8-Jan-08 15:25 Hierdie formule werk goed om bewegende gemiddelde skat solank 'n paar beperkings in gedagte gehou word. Dit bere 'n skatting van die bewegende gemiddelde (nie die werklike bewegende gemiddelde) gebaseer op die belangrike aanname dat die monster waardes normaal versprei is oor die gemiddelde. Ek het daarop dit uit in 'n vorige post. toadth 9-Oktober-11 14:46 Wel, dit was dom wasnt dit. 4 jaar op en kan ek 'n beter voorstel het. Eerder as om te gebruik 'n omsendbrief lys, gebruik 'n geskakelde lys en die hand van die maksimum lys grootte handhaaf. Op hierdie manier kan jy 'n lopende totaal van die totale hou - wanneer dit by die skakel lys, voeg by die totaal, wanneer snoei 'n knoop, aftrek wat waarde uit die totaal. Vir 'n gemiddelde toonbank met 5 knope, miskien jy is nie hiermee 'n prestasie te verbeter, maar vir baie gevalle met sê duisende nodes dit sou saak. 1. In die waarde toevoeg metode, voeg 'n nuwe skakel lys knoop, en voeg by GEMIDDELDE 2. Na die toevoeging van, check die grootte 3. As die grootte drumpel: Trek uit Gemiddelde en dan knip af knoop. Vir nog meer doeltreffendheid, in plaas van die gebruik van geskakelde lys, jy kan jou eie omsendbrief lys implementeer gebaseer op 'n verskeidenheid van die waardes - trek uit GEMIDDELDE wanneer jy 'n verskeidenheid waarde te vervang. Marc Clifton 10-Oktober-11 00:37 4 jaar en ek kan 'n beter voorstel het. Inderdaad, wat sou beter werk. Ek is nie certainn van die korrekte oplossing al sedert die WHALM gemiddeld van elke monster sou 'n billike bedrag van afronding fout te stel. Hmm. Ek wonder of verskil tussen Dobby die breukdeel van die hele gedeelte sal help. Verdeel die hele deel van elke getal met die telling. Hou drie hardloop somme: 1) Die gemiddelde van die hele dele, 2) Die res van elke afdeling, en 3) Die breukdeel van elke nommer. Elke keer as die hele deel van 'n aantal verdeeld is, word die hele deel gevolg by die gemiddelde hardloop som en die res word bygevoeg om die res loop som. Wanneer die res loop som verkry 'n waarde groter as of gelyk aan die telling, sy gedeel deur die telling met die hele deel gevolg by die gemiddelde hardloop som en die res by die res loop som. Ook by elke berekening, die breukdeel word by die fraksionele hardloop som. Wanneer die gemiddelde klaar is, is die res loop som gedeel deur die telling en die gevolg is bygevoeg om die gemiddelde hardloop bedrag as 'n drywende nommer. Byvoorbeeld: Nou wat om te doen met die fraksionele hardloop som. Die gevaar van oorloop is baie minder geneig hier, al is steeds moontlik, so 'n manier om dit te hanteer sou wees om die fraksionele hardloop som deur die telling te verdeel aan die einde en voeg dit by ons gevolg: 'n alternatief sou wees om die fraksionele loop kyk som op elke berekening om te sien of dit is groter as of gelyk aan tel. Wanneer dit gebeur, net doen dieselfde ding wat ons doen met die res loop sum. Documentation tsmovavg uitset tsmovavg (tsobj, s, lag) gee terug Die eenvoudige bewegende gemiddeld vir finansiële tydreekse voorwerp, tsobj. lag dui die aantal vorige datapunte gebruik met die huidige data punt by die berekening van die bewegende gemiddelde. uitset tsmovavg (vektor, s, lag, dowwe) gee terug Die eenvoudige bewegende gemiddelde vir 'n vektor. lag dui die aantal vorige datapunte gebruik met die huidige data punt by die berekening van die bewegende gemiddelde. uitset tsmovavg (tsobj, e, timeperiod) gee terug Die eksponensiële geweegde bewegende gemiddelde vir finansiële tydreekse voorwerp, tsobj. Die eksponensiële bewegende gemiddelde is 'n geweegde bewegende gemiddelde, waar timeperiod spesifiseer die tydperk. Eksponensiële bewegende gemiddeldes te verminder die lag deur die toepassing van meer gewig aan onlangse pryse. Byvoorbeeld, 'n 10-tydperk eksponensiële bewegende gemiddelde gewigte die mees onlangse prys deur 18.18. Eksponensiële Persentasie 2 / (TIMEPER 1) of 2 / (WINDOWSIZE 1). uitset tsmovavg (vektor, e, timeperiod, dowwe) gee terug Die eksponensiële geweegde bewegende gemiddelde vir 'n vektor. Die eksponensiële bewegende gemiddelde is 'n geweegde bewegende gemiddelde, waar timeperiod spesifiseer die tydperk. Eksponensiële bewegende gemiddeldes te verminder die lag deur die toepassing van meer gewig aan onlangse pryse. Byvoorbeeld, 'n 10-tydperk eksponensiële bewegende gemiddelde gewigte die mees onlangse prys deur 18.18. (2 / (timeperiod 1)). uitset tsmovavg (tsobj, t, numperiod) gee terug Die driehoekige bewegende gemiddelde vir finansiële tydreekse voorwerp, tsobj. Die driehoekige bewegende gemiddelde dubbel glad die data. tsmovavg word bereken dat die eerste eenvoudige bewegende gemiddelde met venster breedte van oordek (numperiod 1) / 2. Dan bereken dit 'n tweede eenvoudige bewegende gemiddelde op die eerste bewegende gemiddelde met dieselfde venster grootte. uitset tsmovavg (vektor, t, numperiod, dowwe) gee terug Die driehoekige bewegende gemiddelde vir 'n vektor. Die driehoekige bewegende gemiddelde dubbel glad die data. tsmovavg word bereken dat die eerste eenvoudige bewegende gemiddelde met venster breedte van oordek (numperiod 1) / 2. Dan bereken dit 'n tweede eenvoudige bewegende gemiddelde op die eerste bewegende gemiddelde met dieselfde venster grootte. uitset tsmovavg (tsobj, w, gewigte) gee terug Die geweegde bewegende gemiddelde vir die finansiële tydreekse voorwerp, tsobj. deur die verskaffing van gewigte vir elke element in die bewegende venster. Die lengte van die gewig vektor bepaal die grootte van die venster. As groter gewig faktore word gebruik vir meer onlangse pryse en kleiner faktore vir vorige pryse, die neiging is meer ontvanklik vir onlangse wysigings. uitset tsmovavg (vektor, w, gewigte, dowwe) gee terug Die geweegde bewegende gemiddelde vir die vektor deur die verskaffing van gewigte vir elke element in die bewegende venster. Die lengte van die gewig vektor bepaal die grootte van die venster. As groter gewig faktore word gebruik vir meer onlangse pryse en kleiner faktore vir vorige pryse, die neiging is meer ontvanklik vir onlangse wysigings. uitset tsmovavg (tsobj, m, numperiod) gee terug Die gemodifiseerde bewegende gemiddelde vir die finansiële tydreekse voorwerp, tsobj. Die aangepaste bewegende gemiddelde is soortgelyk aan die eenvoudige bewegende gemiddelde. Oorweeg die argument numperiod die lag van die eenvoudige bewegende gemiddelde wees. Die eerste gewysigde bewegende gemiddelde bereken word soos 'n eenvoudige bewegende gemiddelde. Daaropvolgende waardes word bereken deur die toevoeging van die nuwe prys en trek die laaste gemiddelde van die gevolglike bedrag. uitset tsmovavg (vektor, m, numperiod, dowwe) gee terug Die gemodifiseerde bewegende gemiddelde vir die vektor. Die aangepaste bewegende gemiddelde is soortgelyk aan die eenvoudige bewegende gemiddelde. Oorweeg die argument numperiod die lag van die eenvoudige bewegende gemiddelde wees. Die eerste gewysigde bewegende gemiddelde bereken word soos 'n eenvoudige bewegende gemiddelde. Daaropvolgende waardes word bereken deur die toevoeging van die nuwe prys en trek die laaste gemiddelde van die gevolglike bedrag. dowwe 8212 dimensie te bedryf saam positiewe heelgetal met waarde 1 of 2 Dimension te bedryf saam, wat as 'n positiewe heelgetal met 'n waarde van 1 of 2. dowwe is 'n opsionele insette argument, en as dit nie gebruik word as 'n inset, die verstek waarde 2 word aanvaar. Die standaard van dowwe 2 dui op 'n ry-georiënteerde matriks, waar elke ry is 'n veranderlike en elke kolom is 'n waarneming. As dowwe 1. die insette is veronderstel om 'n kolomvektor of-kolom-georiënteerde matriks, waar elke kolom is 'n veranderlike en elke ry 'n waarneming wees. e 8212 aanwyser vir eksponensiële bewegende gemiddelde karakter vektor Eksponensiële bewegende gemiddelde is 'n geweegde bewegende gemiddelde, waar timeperiod is die tydperk van die eksponensiële bewegende gemiddelde. Eksponensiële bewegende gemiddeldes te verminder die lag deur die toepassing van meer gewig aan onlangse pryse. Byvoorbeeld, 'n tydperk van 10 eksponensiële bewegende gemiddelde gewigte die mees onlangse prys deur 18.18. Eksponensiële Persentasie 2 / (TIMEPER 1) of 2 / (WINDOWSIZE 1) timeperiod 8212 Lengte van tyd positiewe getal Kies Jou CountryAverages / Eenvoudige bewegende gemiddelde Gemiddeldes / Eenvoudige bewegende gemiddelde U word aangemoedig om hierdie taak op te los volgens die taakbeskrywing, met behulp van 'n taal wat jy kan weet. Berekening van die eenvoudige bewegende gemiddelde van 'n reeks van getalle. Skep 'n Stateful funksie / klas / instansie wat 'n tydperk neem en gee 'n roetine dat 'n aantal neem as argument en gee 'n eenvoudige bewegende gemiddelde van sy argumente tot dusver. 'N Eenvoudige bewegende gemiddelde is 'n metode vir die berekening van 'n gemiddelde van 'n stroom van getalle met slegs gemiddeld die afgelope 160 P 160 nommers van die stroom, 160 waar 160 P 160 is bekend as die tydperk. Dit kan toegepas word deur die roeping van 'n parafering roetine met 160 P 160 as argument, 160 I (P), 160 wat dan 'n roetine dat wanneer geroep met individuele, opeenvolgende lede van 'n stroom van getalle, bere die gemiddelde van sou terugkeer (up om), die laaste 160 P 160 van hulle, kan noem dit 160 SMA (). Die woord 160 Stateful 160 in die taak beskrywing verwys na die behoefte aan 160 SMA () 160 om sekere inligting tussen oproepe onthou om dit: 160 Die tydperk, 160 P 160 N bestel houer van ten minste die laaste 160 P 160 nommers uit elk van sy individuele oproepe. Stateful 160 beteken ook dat opeenvolgende oproepe na 160 I (), 160 die initializer, 160 moet afsonderlike roetines wat doen 160 nie 160 aandele gered staat sodat hulle kan gebruik word op twee onafhanklike strome van data terugkeer. Pseudo-kode vir die implementering van 160 SMA 160 is: Hierdie weergawe maak gebruik van 'n aanhoudende tou om die mees onlangse p waardes hou. Elke funksie teruggekeer van init-bewegende-gemiddelde het sy toestand in 'n atoom met 'n tou waarde. Dit implementering gebruik 'n omsendbrief lys om die getalle binne die venster op te slaan aan die begin van elke iterasie wyser verwys na die lys sel wat hou die waarde net beweeg by die venster uit en vervang moet word met die net toegevoegde waarde. Met behulp van 'n afsluiting wysig Tans hierdie SMA cant nogc wees omdat dit 'n sluiting op die wal ken. Sommige ontsnapping analise kan die hoop toekenning te verwyder. Met behulp van 'n struct wysig Hierdie weergawe vermy die hoop toekenning van die sluiting behoud van die data in die stapel raamwerk van die hooffunksie. Dieselfde uitset: Om te verhoed dat die drywende punt benaderings hou opstapel en die groei, kan die kode 'n periodieke som uit te voer op die hele ronde tou skikking. Dit implementering produseer twee (funksie) voorwerpe deel staat. Dit is idiomatiese in E te skei insette van uitset (lees van skryf), eerder as om dit te kombineer in een voorwerp. Die struktuur is dieselfde as die implementering van Standard DeviationE. Die onderstaande elikser program genereer 'n anonieme funksie met 'n ingeboude tydperk p, wat gebruik word as die tydperk van die eenvoudige bewegende gemiddelde. Die aanloop funksie lees numeriese insette en gee dit aan die nuutgeskepte anonieme funksie, en dan inspekteer die resultaat te STDOUT. Die uitset word hieronder getoon, met die gemiddelde, gevolg deur die gegroepeer insette, wat die basis vorm van elke bewegende gemiddelde. Erlang het sluitings, maar onveranderlike veranderlikes. 'N Oplossing is dan om prosesse en 'n eenvoudige boodskap verby gebaseer API te gebruik. Matrix tale roetines om die sweef avarages vir 'n gegewe volgorde van items bereken. Dit is minder doeltreffend te loop as in die volgende opdragte. Voortdurend gevra vir 'n inset ek. wat by die einde van 'n lys T1. T1 kan gevind word deur te druk 2ND / 1, en gemiddelde kan gevind word in Lys / OPS druk op die program te beëindig. Funksie wat 'n lys met die gemiddeld data van die verskaf argument program wat 'n eenvoudige waarde terug by elke aanroeping terug: lys is die lys word gemiddeld: p is die tydperk: 5 opbrengste die gemiddeld lys: Voorbeeld 2: Die gebruik van die program movinav2 (i , 5) - Inisialiseer bewegende gemiddelde berekening, en definieer tydperk van 5 movinav2 (3, x): x - nuwe data in die lys (waarde 3), en gevolg sal word gestoor op veranderlike x, en vertoon movinav2 (4 x) : x - nuwe data (waarde 4), en die nuwe gevolg sal gestoor word op veranderlike x, en vertoon (43) / 2. Beskrywing van die funksie movinavg: veranderlike r - is die gevolg (die gemiddeld lys) wat veranderlike sal teruggestuur word ek - is die indeks veranderlike, en dit dui op die einde van die sub-lys die lys word gemiddeld. veranderlike Z - 'n helper veranderlike Die funksie gebruik wisselende ek om vas te stel watter waardes van die lys sal in die volgende gemiddelde berekening in ag geneem word. By elke iterasie, veranderlike i dui op die laaste waarde in die lys wat gebruik sal word in die gemiddelde berekening. So ons moet net om uit te vind wat die eerste waarde in die lys sal wees. Gewoonlik goed moet p elemente oorweeg, sodat die eerste element sal die een geïndekseer deur (i-P1) te wees. Maar op die eerste iterasies wat berekening gewoonlik negatief sal wees, sodat die volgende vergelyking negatiewe indekse sal vermy: max (i-p1,1) of, reël die vergelyking, Max (i-P, 0) 1. of, reël die vergelyking, (i - (Max (IP, 0) 1) 1), en dan - maar die nommer van elemente op die eerste iterasies sal ook kleiner wees, sal die korrekte waarde (begin indeks 1 einde indeks) wees , (i-Max (IP, 0)). Veranderlike Z hou die algemene waarde (maksimum (IP), 0) sodat die beginindex sal wees (Z1) en die numberofelements sal wees (iz) die middel (lys, Z1, iz) sal die lys van waarde wat sal gemiddeld som terugkeer ( .) sal hulle som som (.) / (iz) ri sal hulle gemiddeld en stoor die resultaat in die toepaslike plek in die lys gevolg behulp van 'n sluiting en die skep van 'n funksie
No comments:
Post a Comment